Harvesting of freshwater microalgae with microbial bioflocculant: a pilot-scale study
نویسندگان
چکیده
BACKGROUND Nowadays, bioflocculation is considered as a potential technology that could be able to alleviate microalgae dewatering cost regarded as the cornerstone hindrance of their full-scale application. However, most bioflocculation studies reported are laboratory scales. This study examined a pilot-scale and in situ flocculation of freshwater microalgae Desmodesmus brasiliensis by microbial bioflocculant. Biochemical composition of microalgal biomass was analyzed to evaluate the applicability of bioflocculation for microalgae-based biofuel production. RESULTS The flocculation efficiency >98 % was achieved at both pilot-scale and in situ treatment. Bioflocculation is simple, effective, economic, and environmentally friendly. Even though total proteins recovered from biomass harvested by centrifugation and that harvested by bioflocculation were significantly different, there was no significant difference in total carbohydrates and total lipids recovered from either biomass harvested by centrifugation or biomass harvested by bioflocculation. CONCLUSION The results herein presented, doubtlessly demonstrated that the γ-PGA bioflocculant produced by Bacillus licheniformis CGMCC 2876 is applicable for commercial-scale microalgae harvesting. In addition, bioflocculation process cost could greatly be reduced by in situ operation as no investment cost is needed for a separate flocculation tank and mixing device. Furthermore, bioflocculation method developed is a worthy microalgae harvesting method for algal-based biofuel production.Graphical abstractThe addition of bioflocculant to microalgae cultures followed by mixing elicits, the formation of heavy flocs which settle out by gravity sedimentation in a relatively short settling time.
منابع مشابه
Bioflocculant production from untreated corn stover using Cellulosimicrobium cellulans L804 isolate and its application to harvesting microalgae
BACKGROUND Microalgae are widely studied for biofuel production. Nevertheless, harvesting step of biomass is still a critical challenge. Bioflocculants have been applied in numerous applications including the low-cost harvest of microalgae. A major bottleneck for commercial application of bioflocculant is its high production cost. Lignocellulosic substrates are abundantly available. Hence, the ...
متن کاملBioresources inner-recycling between bioflocculation of Microcystis aeruginosa and its reutilization as a substrate for bioflocculant production
Bioflocculation, being environmental-friendly and highly efficient, is considered to be a promising method to harvest microalgae. However, one limitation of this technology is high expense on substrates for bioflocculant bacteria cultivation. In this regard, we developed an innovative method for the inner-recycling of biomass that could harvest the typical microalgae, Microcystis aeruginosa, us...
متن کاملMicroalgae Biomass Harvesting by Electro- Coagulation
The use microalgae biomass for the production of biofuels has received great attention in the last decades. Microalgae biofuels could be important alternative to conventional biofuels since microalgae could be produced at high rates without the need of neither arable land, potable water or competition with food. However, the high energy intensive harvesting processes are limiting the commercial...
متن کاملFreshwater microalgae harvested via flocculation induced by pH decrease
BACKGROUND Recent studies have demonstrated that microalga has been widely regarded as one of the most promising raw materials of biofuels. However, lack of an economical, efficient and convenient method to harvest microalgae is a bottleneck to boost their full-scale application. Many methods of harvesting microalgae, including mechanical, electrical, biological and chemical based, have been st...
متن کاملFlue Gas CO2 Capture by Microalgae in Photobioreactor: a Sustainable Technology
This paper addresses the development of pilot scale sustainable technology for microalgae capture of CO2 from power plant flue gas in alkaline solutions to produce biodiesel from algal oil. A combination of computer tools for process simulation, economic evaluation, and environmental impact allow sustainable process assessment. Laboratory scale experiments for growth and culture for algae in la...
متن کامل